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Abstract
We propose a practical scheme for calculating the pair density (PD) on the
basis of the density functional theory. In order to avoid the N-representability
problem of the PD, we implement the variational principle within the set of PDs
that are constructed from the single Slater determinants (SSDs). For the kinetic
energy functional, we utilize the approximate form that is developed by means
of the electron-coordinate scaling laws. The variational principle results in the
simultaneous equations for constituent orbitals of the SSD. It yields the best one
within the SSD-representable PDs.

1. Introduction

The pair density functional theory [1–6] is an attractive theory because the ground-state pair
density (PD) has more information than the ground-state electron density [7, 8]. However,
there are two problems for the practical use of the theory. One is concerned with the N-
representability of the PD. The variational principle with respect to PD should be performed
within the set of N-representable PDs. Although many attempts have been made to obtain
necessary and sufficient conditions for N-representable PDs [9–18], they have not yet been
obtained in a practical form. This is a long-standing problem. Another problem is concerned
with an approximate form of the kinetic energy functional. As is well known, the exact kinetic
energy cannot be expressed by the PD alone. Therefore, a certain approximation is needed for
the kinetic energy functional. Several approximate forms have been proposed so far [19–22].
Recently, Levy and Aryers have proposed a formal method to avoid the above two problems
simultaneously by using Lieb’s Legendre transformation [23].

More recently, we have proposed an approximate scheme for calculating the ground-
state PD by utilizing the extended constrained-search theory [24–31]. This is a computational
approach that incorporates both of the above-mentioned problems. Namely, a noninteracting
reference system is introduced so as to both ensure the N-representability of the reproduced
PD and to provide the approximation of the kinetic energy functional [30].
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In the present paper we shall present an alternative scheme for calculating the PD using
the following strategies. For the N-representability problem, we adopt the same strategy as
in previous work [30], that is to say the search area is fixed within the set of PDs which are
constructed from the single Slater determinants (SSDs). (In what follows, we denote this set
as C ′.) The best solution is searched for within C ′, regardless of whether the ground-state PD
belongs to C ′ or not. The important point is that the best solution even in C ′ may include the
correlation effect and is necessarily N-representable like the previous theory [30, 31]. This will
be shown in the following sections.

For the development of the kinetic energy functional, we previously introduced the
noninteracting reference system into the PD functional theory [30]. In the present scheme,
we use the approximate form which has been derived from the scaling property of the kinetic
energy functional. Due to the simple approximate form of the kinetic energy functional, the
resultant simultaneous equations do not contain any differential operators. This feature is
preferable in terms of computational accuracy and time.

Using the above strategies, we propose a computational scheme for calculating the PD.
The organization of this paper is as follows. In section 2, we give the preliminary definitions
of various quantities that will be required in the subsequent discussions. In section 3, the
approximate form of the kinetic energy functional is derived by using the scaling property of the
kinetic energy functional. In section 4, we give simultaneous equations for constituent orbitals
of the SSD that yields the best PD. In section 5, merits of the present scheme are discussed
from the viewpoint of the computation and the total energy. Finally, some concluding remarks
are given in section 6.

2. Pair density functional theory

Let us begin with the overview of the PD functional theory. The Hamiltonian we shall consider
is given by

Ĥ = T̂ + Ŵ +
∫
ρ̂(r)vext(r) dr, (1)

where T̂ , Ŵ and ρ̂(r) are operators of the kinetic energy, electron–electron interaction and
electron density, respectively, and vext(r) stands for the external potential. For this system, the
Hohenberg–Kohn theorem holds by taking the PD as a basic variable. The PD is defined by

γ (2)(rr′; rr′) = 〈�| γ̂ (2)(rr′; rr′) |�〉 (2)

with

γ̂ (2)(rr′; rr′) = 1
2

∫ ∫
ψ̂+(r, η)ψ̂+(r′, η′)ψ̂(r′, η′)ψ̂(r, η) dη dη′, (3)

where ψ̂(r, η) and ψ̂+(r, η) are field operators of electrons, η and η′ are spin coordinates, and
� is the antisymmetric wavefunction. According to the constrained-search formulation of the
PD functional theory, the universal functional F[γ (2)] is defined by

F[γ (2)] := Min�→γ (2)(rr′;rr′) 〈�| T̂ + Ŵ |�〉 . (4)

By using this definition, the Hohenberg–Kohn theorem can be proven in the extended
form [1, 4, 30]. If the minimizing wavefunction in equation (4) is denoted by �[γ (2)], then
the theorem is expressed as

�0 = �[γ (2)0 ] (5)
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and

E0 = Minγ (2) E[γ (2)]
= E[γ (2)0 ], (6)

where �0, E0 and γ (2)0 (rr′; rr′) stand for the ground-state wavefunction, energy and pair
density, respectively. Further, E[γ (2)] is the total energy functional which is defined as

E[γ (2)] := F[γ (2)] + 2

N − 1

∫ ∫
γ (2)(rr′; rr′)vext(r) dr dr′. (7)

By using the kinetic energy functional T [γ (2)] which is defined by

T [γ (2)] := 〈
�[γ (2)]∣∣ T̂

∣∣�[γ (2)]〉 , (8)

equation (7) is rewritten as

E[γ (2)] = T [γ (2)] + e2
∫∫

γ (2)(rr′; rr′)
|r − r′| dr dr′ + 2

N − 1

∫ ∫
γ (2)(rr′; rr′)vext(r) dr dr′. (9)

Equation (9) is the starting expression for the total energy functional in the PD functional
theory. As mentioned in section 1, the approximate form of T [γ (2)] should be given so as to
perform the variational principle for equation (6).

3. Approximate form of the kinetic energy functional

In this section, we shall give an approximate form of T [γ (2)]. For this purpose, we use
the scaling property of T [γ (2)] [20]. By using equation (4) and the fact that �[γ (2)] yields
γ (2)(rr′; rr′), equation (8) can be rewritten as [2, 20, 30]

T [γ (2)] = Min�→γ (2) 〈�| T̂ |�〉 . (10)

From equation (10), the minimizing wavefunction �[γ (2)] can be obtained by minimizing
〈�|T̂ |�〉 with two constraints, i.e. �(r1, . . . , rN ) yields a prescribed γ (2)(rr′; rr′), and is
normalized to unity. In accordance with the Lagrange undetermined multiplier method, we
introduce the Lagrange multipliers λ[γ (2)](r, r′) and Ē corresponding to the above constraints.
Thus, we obtain the equation for �[γ (2)]:{

T̂ +
∫ ∫

λ[γ (2)](r, r′)γ̂ (2)(rr′; rr′) dr dr′
}
�[γ (2)](r1, . . . , rN )

= Ē�[γ (2)](r1, . . . , rN ). (11)

This equation leads to the scaling property of T [γ (2)] [20, 30]. We have

T [γ (2)ζ ] = ζ 2T [γ (2)], (12)

where ζ is a scaling factor for the electron coordinates, and γ (2)ζ (rr′; rr′) denotes the scaled PD
that is given by

γ
(2)
ζ (rr′; rr′) = ζ 6γ (2)(ζ rζ r′; ζ rζ r′). (13)

Letting limζ→1
∂
∂ζ

act on both sides of equation (12), and integrating by parts, we obtain

2T [γ (2)] = −
∫ ∫

γ (2)(rr′; rr′)r · ∇
{

δT [γ (2)]
δγ (2)(rr′; rr′)

}
dr dr′

−
∫ ∫

γ (2)(rr′; rr′)r · ∇
{

δT [γ (2)]
δγ (2)(r′r; r′r)

}
dr dr′. (14)
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With reference to the local density approximation in the conventional density functional theory,
the following approximate form of T [γ (2)] is assumed

T [γ (2)] =
∫ ∫

t (γ (2))
∣∣
γ (2)=γ (2)(rr′;rr′) dr dr′, (15)

where t (γ (2)) is a function of γ (2). Substituting equation (15) into equation (14), we get∫ ∫ {
4t (γ (2))− 3γ (2)

∂ t (γ (2))

∂γ (2)

}∣∣∣∣
γ (2)=γ (2) (rr′;rr′)

dr dr′ = 0. (16)

As the necessary condition, we get the differential equation with respect to t (γ (2)):

4t (γ (2))− 3γ (2)
∂ t (γ (2))

∂γ (2)
= 0. (17)

Solving the differential equation, and substituting the solution into equation (15), we finally get
the approximate form of T [γ (2)]:

T [γ (2)] = C
∫ ∫

γ (2)(rr′; rr′)4/3 dr dr′, (18)

where C is a constant. This approximate form is regarded as a special case of the approximate
form that has been proposed by Levy and Ziesche [20]. In the following discussion, we use
equation (18) as an approximate form of the kinetic energy functional.

4. Simultaneous equations

The variational principle should be performed within N-representable PDs. However, the
necessary and sufficient conditions for N-representable PDs have not yet been obtained as
mentioned in section 1. In the present scheme, the search area is fixed within C ′ similarly to
previous work [30]. The PD within C ′ is expressed as the expectation value of γ̂ (2)(rr′; rr′)
with respect to a SSD, i.e.,

γ (2)(rr′; rr′) = 1
2

∑
μ1,μ2

{∫ ∫
ψ∗
μ1
(r, η)ψ∗

μ2
(r′, η′)ψμ2(r

′, η′)ψμ1(r, η) dη dη′

−
∫ ∫

ψ∗
μ1
(r, η)ψ∗

μ2
(r′, η′)ψμ1(r

′, η′)ψμ2(r, η) dη dη′
}
, (19)

where ψμ(r, η)′s denote N orthonormal single-particle orbitals which construct the SSD. Since
γ (2)(rr′; rr′) is regarded as a functional of the set {ψμ(r, η)}, we can perform the variation of
E[γ (2)] with respect to the set {ψμ(r, η)} instead of γ (2)(rr′; rr′). This variation enables us to
perform the variational principle within C ′. Consequently, the following functional of the set
{ψμ(r, η)} should be minimized:

�
[{
ψμ

}] = E
[
γ (2)

[{
ψμ

}]] −
∑
μ, ν

εμν

{∫
ψ∗
μ(r, η)ψν(r, η) dr dη − δμν

}
, (20)

where εμν is the Lagrange multiplier which corresponds to the constraint∫
ψ∗
μ(r, η)ψν(r, η) dr dη = δμν. (21)

Substituting equations (9) and (18) into equation (20), we get

�
[{
ψμ

}] = C
∫ ∫

γ (2)(rr′; rr′)4/3 dr dr′ + e2
∫ ∫

γ (2)(rr′; rr′)
|r − r′| dr dr′
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+ 1

N − 1

∫ ∫
γ (2)(rr′; rr′)

{
vext(r)+ vext(r′)

}
dr dr′

−
∑
μ,ν

εμν

{∫
ψ∗
μ(r, η)ψν(r, η) dr dη − δμν

}
, (22)

where we use the fact that γ (2)(rr′; rr′) = γ (2)(r′r; r′r) in the second line. The minimization
condition δ�/δψ∗

μ(r, η) = 0 yields∫ ∫ ∑
ν

{
ψ∗
ν (r1, η1)ψν(r1, η1)ψμ(r, η)− ψ∗

ν (r1, η1)ψμ(r1, η1)ψν(r, η)
}

×
[

4C

3
γ (2)(rr1; rr1)

1/3 + e2

|r − r1| + vext(r)+ vext(r1)

N − 1

]
dr1 dη1

=
∑
ν

εμνψν(r, η). (23)

The Lagrange multipliers εμν are shown to be elements of a Hermitian matrix ε. It is always
possible, therefore, to find a unitary matrix U such that U−1εU becomes a diagonal matrix, i.e.

∑
i, j

U∗
iμεi jU jν = ε̄μδμν, (24)

where ε̄μ are diagonal elements of U−1εU and U jν denote matrix elements of U .
Let us consider the new set of orbitals {χμ(r, η)} that is obtained from the transformation

χμ(r, η) = ∑
i U∗

iμψi (r, η). Since U is a unitary matrix, this transformation is rewritten as

ψμ(r, η) =
∑
ν

Uμνχν(r, η). (25)

Substituting equation (25) into equations (21) and (23), and using equation (24), we finally get
the following simultaneous equations for {χμ(r, η)}:∫ ∫ ∑

ν

{
χ∗
ν (r1, η1)χν(r1, η1)χδ(r, η)− χ∗

ν (r1, η1)χδ(r1, η1)χν(r, η)
}

×
[

4C

3
γ (2)(rr1; rr1)

1/3 + e2

|r − r1| + vext(r)+ vext(r1)

N − 1

]
dr1 dη1

= ε̄δχδ(r, η) (26)

and ∫
χ∗
μ(r, η)χν(r, η) dr dη = δμν. (27)

If we obtain the set {χμ(r, η)} from the above equations, then the best solution in C ′ is provided
by

γ (2)(rr′; rr′) = 1
2

∑
μ1,μ2

{∫ ∫
χ∗
μ1
(r, η)χ∗

μ2
(r′, η′)χμ2(r

′, η′)χμ1(r, η) dη dη′

−
∫ ∫

χ∗
μ1
(r, η)χ∗

μ2
(r′, η′)χμ1(r

′, η′)χμ2(r, η) dη dη′
}
, (28)

because the SSD is generally kept invariant under a unitary transformation (25) except for
the trivial phase factor. Equations (26) and (27) should be solved simultaneously with
equation (28).
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5. Discussions

In this section, we shall discuss the merits of the present scheme from the viewpoint of the
computation and the total energy. First, let us explain that simultaneous equations (26) and (27)
are tractable for calculating the PD. For this aim, equation (26) is rewritten as

{F(r)− ε̄δ}χδ(r, η) = Gδ(r, η)χδ(r, η) (29)

with

F(r) = vext(r)+
∫ ∫ ∑

ν

|χν(r1, η1)|2

×
{

4C

3
γ (2)(rr1; rr1)

1/3 + e2

|r − r1| + vext(r1)

N − 1

}
dr1 dη1, (30)

Gδ(r, η) =
∫ ∫ ∑

ν

{χ∗
ν (r1, η1)χδ(r1, η1)χν(r, η)}

×
{

4C

3
γ (2)(rr1; rr1)

1/3 + e2

|r − r1| + vext(r1)

N − 1

}
dr1 dη1, (31)

where the orthonormality of {χμ(r, η)} is used. The outline of the calculation procedure is
as follows. Initially, a trial set of {χμ(r, η)} is prepared so as to calculate F(r) and Gδ(r, η).
Then, the new χδ(r, η) can be obtained from equation (29) for a given value of ε̄δ. The value
of ε̄δ is determined by requiring χδ(r, η) to be normalized, i.e. the value of ε̄δ is changed
until χδ(r, η) is normalized to unity. After the determinations of all χδ(r, η) and ε̄δ, the
convergence and orthogonality are checked appropriately. The iteration goes on until the
convergence and orthogonality are accomplished. In this way, simultaneous equations can be
solved in a self-consistent way. This procedure is quite similar to the calculation scheme of the
Hartree–Fock equation [32]. The feature of these simultaneous equations is that they do not
contain any differential operators. So, the present scheme has an advantage over the previous
scheme [30, 31] from the viewpoint of computational accuracy and time.

Next, we shall show that searching within C ′ may provide the better result than the
Hartree–Fock approximation. The minimization of E[γ (2)] within C ′ can be rewritten as

Minγ (2)∈C′ E
[
γ (2)

] = Minγ (2)∈C′

{
F

[
γ (2)

] + 2

N − 1

∫∫
γ (2)(rr′; rr′)vext(r) dr dr′

}

= Minγ (2)∈C′
{
Min�→γ (2) 〈�| H |�〉}

= Min�∈D′ 〈�| H |�〉 , (32)

where D′ is the set of wavefunctions that yield PDs of C ′. The set D′ contains not only all
SSDs but also other types of wavefunctions [15]. Namely, the set of all SSDs {�} is a subset
of D′. Therefore, we obtain

Min�∈D′ 〈�| H |�〉 � Min{�} 〈�| H |�〉 . (33)

Substitution of equation (32) into equation (33) leads to the following inequality:

Minγ (2)∈C′ E
[
γ (2)

]
� Min{�} 〈�| H |�〉 . (34)

Note that Min{�}〈�|H |�〉 is equal to the total energy of the Hartree–Fock approximation.
Taking into account the fact that the SSD-representable PD is necessarily N-representable, the
above inequality means that searching within C ′ is superior to the Hartree–Fock approximation
if we prepare the well-behaved form of the kinetic energy functional. Therefore, we conclude
that the best PD within C ′ may include the correlation effect more or less, but definitely if
equation (18) works well.
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6. Concluding remarks

We shall comment on the search region C ′. Since the necessary and sufficient conditions for
the N-representable PDs have not yet been found, we cannot judge whether the set of the SSD-
representable PDs is too small or not. No one knows to what extent the ground-state PD can be
reproduced by using a SSD—this is still an open question. Concerning this problem, Davidson
has pointed out that it is crucial how many linearly independent factors must be involved in the
formal expansion for PDs [33]. His conclusion is that in any case the expansion must contain at
least N linearly independent factors for a PD of an N-electron system [33]. Although the form
of the SSD-representable PD intuitively seems to be restrictive, it is difficult to judge from his
paper to what extent the SSD-representable PD can express the ground-state PD.

Thus, we may expect that searching for the best PD within C ′ would give a good
approximation, while we also have the negative possibility such that the search region would
be much smaller than the set of N-representable PDs. In spite of the fact that such a negative
possibility is uncertain at present, some workers may be sceptical that the search region would
be too small. This may be due to the fact that the correlation effects are caused by the doubly
excited determinants which differ from the Hartree–Fock determinant in replacing a couple of
occupied states by a couple of unoccupied ones. This picture is based on the configuration
interaction (CI) method, and the constituent single-particle orbitals of the determinants are
the solution of the Hartree–Fock equation. However, the Kohn–Sham orbital is essentially
different from the Hartree–Fock orbital. The SSD can exactly reproduce the ground-state
electron density in the density function theory [34], while the Hartree–Fock never reproduces
it.

Against such a background, we shall position the present scheme in the PD functional
theory. The PD functional theory is not yet a fully formed field. Therefore, it is important as
a first step in developing the PD functional theory to present an initial standard scheme which
corresponds to the Hartree–Fock approximation of the wavefunction theory. The position of
the present scheme in the PD functional theory just corresponds to that of the Hartree–Fock
approximation in the wavefunction theory. As is well known, the Hartree–Fock approximation
gives the best solution within the set of SSDs. In a similar way to that, the present scheme gives
the best PD within the restricted search region consisting of the SSD-representable PDs. There
is no doubt that the Hartree–Fock approximation can be regarded as an initial standard scheme
in the wavefunction theory. Correspondingly, the present scheme may be regarded as an initial
standard in the PD functional theory. Furthermore, although the search region is restricted, the
present scheme may contain the correlation effects more or less. This fact is also the reason why
the present scheme may be regarded as an initial standard scheme in the PD functional theory.

Therefore, it seems to be meaningful to check the performance of the present scheme. We
are sure that this performance evaluation is the first thing to be done to give the starting point
of the PD functional theory similarly to the Hartree–Fock approximation of the wavefunction
theory. We are now preparing numerical calculations for this purpose.
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